211225

[211225] Trong mặt phẳng $Oxy$, cho $\left( E \right):\frac{{{x}^{2}}}{16}+\frac{{{y}^{2}}}{9}=1$. Tìm tọa độ tiêu điểm, độ dài trục lớn, độ dài trục bé, tiêu cự, tâm sai của $\left( E \right)$.

Giải.

© Được viết bởi CaolacVC. Blog https://caolacvc.blogspot.com

Từ phương trình chính tắc của $\left( E \right)$ ta có $a=4,b=3$. Suy ra $c=\sqrt{{{a}^{2}}-{{b}^{2}}}=\sqrt{{{4}^{2}}-{{3}^{2}}}=\sqrt{7}$.

Tọa độ tiêu điểm: ${{F}_{1}}\left( -\sqrt{7};0 \right),{{F}_{2}}\left( \sqrt{7};0 \right)$.

Độ dài trục lớn là: $2a=2.4=8$.

Độ dài trục bé là $2b=2.3=6$.

Tiêu cự: $2c=2\sqrt{7}$.

Tâm sai: $e=\frac{c}{a}=\frac{\sqrt{7}}{4}$.

Nhận xét