722225

[722225] Gọi ${H_1, H_2, H_3, H_4}$ là các hình phẳng giới hạn bởi đồ thị hàm số liên tục ${y=f(x)}$ và trục hoành với ${x}$ lần lượt thuộc các đoạn ${[1 ; 2],[2 ; 3],[3 ; 4],[4 ; 5]}$ (Hình). Biết rằng, các hình ${H_1, H_2, H_3, H_4}$ lần lượt có diện tích bằng ${\frac{9}{4}, \frac{11}{12}, \frac{11}{12}}$ và ${\frac{9}{4}}$. Giá trị ${\int\limits_1^5 f(x) {d} x}$ bằng bao nhiêu?

© Được viết bởi CaolacVC. Blog https://caolacvc.blogspot.com

Lưu ý: Diện tích nằm phía trên trục hoành mang dấu DƯƠNG, nằm phía dưới trục hoành mang dấu ÂM.

Ta có

${\begin{align} \int\limits_1^5 f(x) {d} x & =\int\limits_1^2 f(x) {d} x+\int\limits_2^3 f(x) {d} x+\int\limits_3^4 f(x) {d} x+\int\limits_4^5 f(x) {d} x \\ & =\int\limits_1^2|f(x)| {d} x-\int\limits_2^3|f(x)| {d} x+\int\limits_3^4|f(x)| {d} x-\int\limits_4^5|f(x)| {d} x \\ & =S_{H_1}-S_{H_2}+S_{H_3}-S_{H_4}=\frac{9}{4}-\frac{11}{12}+\frac{11}{12}-\frac{9}{4}=0 . \end{align}}$

Nhận xét